Sifat3. Jika A adalah matriks diagonal atau matriks skalar, maka. \boxed {\text {det} (A)=a_ {11}\times a_ {22}\times\dots\times a_ {nn}} det(A) = a11 × a22 × ⋯×ann. ( Determinan A A adalah perkalian semua entri pada diagonal utama) Contoh 3. Diberikan matriks A A sebagai berikut :
Kelas 11 SMAMatriksInvers Matriks ordo 2x2Invers Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0322Invers matriks A = [1 2 3 4] adalah A^-1= ....0245Diketahui matriks A=7 2 3 1 dan B=1 -2 -3 7. Tunjukka...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videojika menemukan soal seperti ini maka pertama kita harus ingat terlebih dahulu misalkan kita punya a = matriks yang isinya abcd maka untuk mendapatkan transpose dari matriks kita tinggal menuliskan entri-entri pada baris di matriks A menjadi entri entri pada kolom di matriks A transpose Kemudian untuk mendapatkan invers dari matriks A itu kita tinggal menggunakan rumus 1 per determinan a dikalikan dengan matriks yang isinya D min b min c dan a dengan determinan a = a dikurang b * c di sini kita punya matriks A = 2 3 5 7 pertama kita cari dulu determinan dari matriks A ini berarti itu = 2 * 7 dikurang 3 x 5 = 14 dikurang 15 hasilnya adalah minus 1 berikutnya bisa kita cari invers dari matriksBerarti itu sama dengan 1 per Terminal matriks A yaitu - 1 dikalikan dengan matriks yang isinya 7 - 3 - 5 dan 2. Berarti ini = minus 1 dikalikan dengan matriks yang isinya 7 - 3 - 5 dan 2 kita kalikan minusnya ke dalam matriks jadi didapat - 735 dan minus 2. Selanjutnya akan kita cari transpose dari a. Invers ini berarti ini pertama kita tuliskan dulu entri-entri yang ada pada baris pertama matriks invers ini menjadi antri pada kolom pertama di matriks transposenya berarti kita tulis ini - 7 dan 3 selanjutnya kita Tuliskan entri-entri pada baris kedua di matriks A invers menjadi kolom di matriks transpose pada kita tulis itu 5 dan min 2 jadi dengan demikian kita sudah dapat matriks transpose dari a invers nya sampai jumpa di tahun berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Karenaitu kebalikan dari 3 adalah 1/3, jadi kebalikan dari bilangan rasional a adalah 1 / a. Ini tentu juga berlaku untuk matriks. Namun, dalam matriks, ada rumus terpisah untuk menghitung invers. Rumus terbalik dapat dibagi menjadi dua jenis, yaitu rumus untuk pesanan 2×2 dan rumus untuk pesanan 3×3. Kelas 11 SMAMatriksInvers Matriks ordo 2x2Invers Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0322Invers matriks A = [1 2 3 4] adalah A^-1= ....0245Diketahui matriks A=7 2 3 1 dan B=1 -2 -3 7. Tunjukka...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videoHalo Ko Friends jika kita melihat soal seperti ini pertama-tama konsepnya nah yang pertama konsepnya jika ada matriks A = abcd maka invers dari matriks A + 1 per B terminal A dikalikan nah ini De Nani b sama a minta balikan hujan tadinya P jadi min b hujan saya jadi Minten aanya di bawah ini nah kemudian hanya ini Ca cari determinannya dengan cara seperti ini a x minus TC nah kemudian misal ada skalar k dikali dengan materi abcd itu sama dengan alatnya masuk jadi k a k b k c k d kita misalkan matriks A adalah matriks Agua min 3 min 24 pertama-tama untuk mencari invers nya kita cari dulu determinan dari matriks tersebut itu determinan a = a * b minus BC jati di sini anyadela dua kali yaitu 4 - 3 hanya minus 22 kali 48 minus 3 x min 26 = 26 berarti invers dari matriks p = 1 per determinan matriks A * C min b min c a kemudian masukkan aku per determinan tanyakan tadi 22 dikali matriks ini nantinya itu 4 adminKarena jam 3 ini punya 3 hujan min c c nya tuh min 2 berarti di sini menceng adalah 2 kemudian a122. Nah, kemudian seperti konsep Nomor 36 berarti kalar tengahnya ini termasuk batik setengah kali kan 4 bagian tengah tangan ikan 3 bagian tengah kita kalikan 2 dan yang terakhir Tengah dikalikan 2 kemudian hasilnya yaitu setengah kali 42 kali 33 per 2 kali 21 setengah kali 21Nah jadi invers matriks atuh ini Nah karena di soal pilihannya ini tidak ada nah kemudian kita balikan lagi nih. Oh ternyata ada pilihannya Nah ini kan bentuk dari pilihannya c. Jadi inversnya kita sampai sini saja arti jawaban yang tepat tadi yang c pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

Denisi 3.4. [1] Misalkan A= [a ij] adalah matriks fuzzy berukuran m pdan B= [b ij] adalah matriks fuzzy berukuran p n, maka perkalian dari A;Bdide nisikan sebagai berikut: AB= [a ij b ij] = Xp k=1 a ik b kj 3.2. g-invers A2F mn dikatakan regular jika ada X2F nm sehingga AXA= A. Dalam hal ini, X disebut g-invers dari A dan dilambangkan

Kelas 11 SMAMatriksInvers Matriks ordo 2x2Invers Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0322Invers matriks A = [1 2 3 4] adalah A^-1= ....0245Diketahui matriks A=7 2 3 1 dan B=1 -2 -3 7. Tunjukka...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videountuk soal di atas kita diberikan invers dari matriks A adalah 4 2/3 dan 1 kita diminta untuk mencari matriks A maka disini kita akan menggunakan rumus matriks A = matriks A invers dibagi dengan determinannya maka pertama kita cari dulu determinannya determinan dari matriks A rumusnya adalah misalkan dengan matriks A = a b c dan d maka determinan nya adalah a dikali B dikurang C dikali b, maka dari sana kita akan dapat 4 * 1 dikurang 3 * 2 maka 4 dikurang 6 hasilnya adalah min 2 maka kita masukkan ke dalam rumus matriks A disini adalah matriks A invers 1/4 2/3 dan 1 dibagi dengan determinan yaitu min 2 kita akan dapat matriks 4 2 3 dan 1 kita X dengan 1 per 2 maka setelah kita kalikan kita akan dapat min 2 min 1 min 3 per 2 dan 1 per 2 Kemudian kita lihat ke dalam rumus invers matriks di mana rumus invers matriks adalah 1 per determinan dikali dengan Hasil perubahan dari matriks A matriks yaitu a b c d akan berubah menjadi d a b dan c. Maka di sini kita akan mengubah bentuk matriks nya min 2 dan 1/2 kita tukar kita akan dapat min 1 atau 2 kemudian min 2 sedangkan min 1 dan Min 3/2 kita kali dengan negatif Maka hasilnya adalah 1 dan 3 per 2 maka ini adalah jawaban untuk soal di atas sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Inversdapat juga diartikan sebagai lawan dari sesuatu (kebalikan). Invers matriks adalah kebalikan (invers) dari sebuah matriks. Jadi, apabila matriks tersebut dikalikan dengan inversnya, B 3 +B 2 = elemen-elemen baris ke-3 ditambah elemen-elemen baris ke-2. 4) 1/5B 3 = elemen-elemen baris ke-3 dikali degan ⅕. 5) Kelas 11 SMAMatriksInvers Matriks ordo 2x2Invers Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0322Invers matriks A = [1 2 3 4] adalah A^-1= ....0245Diketahui matriks A=7 2 3 1 dan B=1 -2 -3 7. Tunjukka...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videoHalo Ko Friends jika kita melihat soal seperti ini pertama-tama konsepnya yaitu nah konsep yang pertama itu misal ada matriks A 2 a b c d ini maka invers dari matriks A itu tuh sama dengan 1 per determinasi a dikalikan dengan matriks naik kita balik yang tadinya a b c d e a ngajian rumus dari determinan matriks B = A * B B * C nah kemudian untuk ketiga misal ada skalar kah dikalikan suatu materi maka skalanya itu masuk jadi * a * b * c * d seperti ini. Nah kemudian pada soal diketahui matriks A 1 2 3 4 k a nya yaitu matriksBos arti pertama-tama kita harus cari determinannya terlebih dahulu yaitu determinan matriks a na rumusnya apa Ade angin 142 hanya 3 = 1 * 442 * 364 - 6 berarti - 2 nah, kemudian kita harus tulis a invers 1 pernah determinan a. Di jadikan satu determinan a determinan yang itu minus 2 dikali dengan matriksnya Bali jadi seperti tamat dengan tapi kan jadinya itu 4 berarti di sini 4 dan minus B6 B12 nanti di sini mimpinya ituS2 dan minus 6 minus tadi kan gajinya Nadine sc3 Yan anaknya tadi kan 1 berarti tanggal 1. Nah kemudian dia pakai Konsep ke-3 ini. Nah Berarti invers matriks A ini kita masukkan tengahnya nanti ini Tengah kalikan 4 jam di sini minta Tengah kalikan - 2 yang di sini Min Tengah kalikan minus 3 dan Min kalikan 19 hasilnya = setengah x 4 - 2 min setengah X min 2 jadikan Mimin positif berarti positif 1 dan Min setengah X min 3 min positif positifPer 2 kemudian Min setengah x 1 berarti minus jadi invers matriks A hasilnya tuh ini jadi jawaban yang tepat adalah yang sampai jumpa di pertanyaan nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Jadi diperpoleh nilai x dan y yang memenuhi berturut - turut adalah 2 dan 1. Baca Juga: Invers dan Determinan Matriks. maka nilai x / y adalah . A. -1 B. 0 C. 2 D. 3 E. 4. Pembahasan: Operasi hitung penjumlahan matriks: Diperoleh dua buah persamaan: x - y + 1 = 3 → x - y = 2;
Invers Matriks – Matriks adalah salah satu bahan pembelajaran untuk matematika yang terdiri dari susunan numerik dalam kurung. Sementara itu, menurut pendapat para ahli, matriks didefinisikan sebagai satu set angka yang disusun dalam baris atau kolom dalam tanda kurung kotak atau tanda kurung biasa. Bahan matriks dibagi menjadi beberapa jenis sebagai matriks penentu dari matriks terbalik, matriks yang berdekatan, dan sebagainya. Namun, di antara semua jenis materi dalam matriks, ada satu bahan yang banyak diminati, yaitu rumus matriks terbalik dan contoh soal matriks terbalik. Bahkan, kita dapat menemukan materi yang berisi rumus matriks atau perkalian matriks dalam matematika di sekolah menengah. Faktanya, masih banyak siswa yang kesulitan mempelajari rumus matriks. Penggunaan kata terbalik dalam matriks terbalik yang sama sering ditemukan dalam aljabar, yang berarti bahwa itu adalah kebalikannya. Karena itu kebalikan dari 3 adalah 1/3, jadi kebalikan dari bilangan rasional a adalah 1 / a. Ini tentu juga berlaku untuk matriks. Namun, dalam matriks, ada rumus terpisah untuk menghitung invers. Rumus terbalik dapat dibagi menjadi dua jenis, yaitu rumus untuk pesanan 2×2 dan rumus untuk pesanan 3×3. Dalam artikel kali ini saya akan menjelaskan matriks invers dari urutan 2×2 dan urutan 3×3 bersama – sama dengan contoh – contoh soal invers. Berikut ini ulasan lebih lanjut. Rumus Invers Matriks Beserta Contoh Soal Kami menemukan berbagai contoh masalah seperti perkalian matriks invers 3×3 atau matriks invers 2×2 pada matriks invers 4×4. Faktanya, metode dan metode penyelesaian masalah dengan matriks tidak jauh berbeda sampai Anda memahami rumus matriks terbalik itu sendiri. Jadi bagaimana kita dapat dengan cepat mempelajari rumus matriks? Kebalikan dari matriks ditunjukkan dengan nama tertentu sebagai huruf besar dan karenanya meningkat menjadi -1. Misalnya, sebagai matriks B, kebalikan dari matriks B & supmin; ¹ ditulis. Sebelum kita membahas rumus matriks terbalik 2×2 dan mengatur 3×3 bersama dengan contoh masalah matriks terbalik. Saya akan membagikan beberapa karakteristik inversi. Sifat-sifat dari matriks terbalik adalah sebagai berikut AA‾¹ = A‾¹A = IAB‾¹ = B‾¹A‾¹ A‾¹‾¹ = AJika XA = B, maka X = BA-¹Jika AX = b, maka X = A-¹B Secara umum, rumus invers matriks dapat ditulis sebagai berikut Keterangan A‾¹ = Invers Matriks Adet A = Determinan Matriks AAdj A = Adjoin Matriks A 1. Invers Matriks 2×2 Setelah menjelaskan rumus matriks terbalik dan sifat-sifatnya di atas. Selanjutnya, saya akan menjelaskan cara menemukan inversi matriks 2×2. Tentu saja, Anda akan menemukan 2×2 terbalik dengan rumus di atas dan saat Anda membuatnya lebih mudah daripada matriks pesanan 3×3. Untuk perhitungan terbalik ini 2×2 sesuai dengan metode cepat. Namun, metode cepat ini hanya berlaku jika pesanannya 2×2. Sebelum itu, pertama-tama kita harus menemukan nilai dari matriks tetangga. Rincian lebih lanjut dapat ditemukan dalam contoh berikut. [su_box title=”Contoh Soal Matriks 2×2″ box_color=”0031e8″] Menentukan matriks invers dari! Jawaban Untuk menghitung kebalikan dari matriks, metode cepat digunakan. Sebelum menggunakan rumus matriks terbalik di atas. Pertama-tama kita harus menemukan nilai adjoin dahulu. Untuk menemukan matriks invers 2×2 yang berdekatan, kita hanya perlu menukar atau memindahkan elemen yang posisinya ada di baris pertama kolom pertama dengan elemen-elemen di baris kedua kolom kedua. Berikutnya, baris kedua dari kolom pertama dan baris pertama dari kolom kedua dikalikan dengan -1. Hasilnya adalah sebagai berikut. Selanjutnya, cari determinan matriksdet = 2 × 6 – 4 × 1 = 12 – 4 = 8 Setelah nilai adjoin dan determinan matriks diketahui. Kemudian masukkan rumus matriks di atas. Hasilnya adalah [/su_box] 2. Invers Matriks 3×3 Rumus kebalikan dari matriks 3×3 sesuai dengan urutan 2×2 sebagai berikut Hampir seperti dalam pencarian perkalian dari matriks 2×2 di atas, pertama-tama kita harus menemukan determinan untuk menemukan matriks invers 3×3. Penentu urutan 3×3 dapat dicari dengan dua metode Metode SarrusMetode Minor – Kofaktor Secara umum, determinan terbalik dari matriks 3×3 lebih mudah untuk dihitung menggunakan metode Sarrus. Metodenya adalah sebagai berikut Selanjutnya kita mencari matriks tetangga dalam rumus matriks terbalik. Untuk menghitung matriks yang berdekatan, pertama-tama kita perlu menentukan nilai matriks kofaktor. Matriks kofaktor adalah matriks yang elemennya dimodifikasi oleh nilai-nilai determinan yang nilainya bukan kolom dan tidak selaras dengan elemen sumber. Kemudian, sebagai alternatif, tanda positif atau negatif diberikan sebagai berikut Jadi, Anda lebih memahami rumus invers dari matriks 3×3. Saya akan memberikan contoh masalah yang berkaitan dengan rumus terbalik ini. Berikut adalah contoh masalah matriks terbalik. [su_box title=”Contoh Soal Matriks 3×3″ box_color=”0031e8″] Matriks A dikenal sebagai berikut Menentukan kebalikan dari matriks di atas A! Jawaban [/su_box] Ini adalah penjelasan dari rumus matriks terbalik dan contoh masalah matriks terbalik yang bisa saya jelaskan dalam artikel ini. Bahkan, mengerjakan berbagai masalah matriks sangat mudah. Kita membutuhkan lebih banyak latihan langsung dan menghafal setiap rumus perkalian matriks. Hal lain yang perlu kita ingat adalah menemukan perkalian dari matriks invers. Kita harus menemukan determinan dan matriks yang berdekatan. Ini adalah rumus matriks invers absolut. Baca Juga Rumus Matriks MatematikaPenjumlahan MatriksPerkalian Matriks
Sifatsifat Invers Matriks. Teorema 2: Jika A dan B adalah matriks-matriks yang dapat dibalik dan yang ukurannya sama, maka. (a) AB dapat dibalik. (b) (AB)−1 = B−1A−1 ( A B) − 1 = B − 1 A − 1. Sebuah hasilkali matriks yang dapat dibalik selalu dapat dibalik, dan invers hasil kali tersebut adalah hasil kali invers dalam urutan yang
Kelas 11 SMAMatriksInvers Matriks ordo 2x2Invers Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0322Invers matriks A = [1 2 3 4] adalah A^-1= ....0245Diketahui matriks A=7 2 3 1 dan B=1 -2 -3 7. Tunjukka...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videoHalo Cobra jadi untuk mengerjakan soal seperti ini pertama-tama kita perlu mencari rumus invers nya jadi untuk rumus invers di sini. Misalkan kita memiliki matriks dengan ordo 2 * 2, maka untuk mendapatkan informatics x-nya maka 1 per determinan dari x atau o X dikali kotangan D min b * c lalu dikalikan dengan matriks 2 * 2 yaitu diagonal adiknya kita balik dengan diagonal AC dan BD nya kita beri tanda negatif didiemin c dan min b di sini ada invers matriks dari A = 1 per determinan dari diagonalnya berarti 2 dikalikan dengan 3 - 4 dikalikan dengan 1 dikalikan dengan diagonal pertamanya kita balik jadi 23 jadi kita berubah bentuknya 3 dan 2 jaga berikutnya 41 kita beli tanda negatif X min 4 Min 11 per 64 bagi 1 per 2 dikalikan3 min 1 Min 4 dan 2 jika kita pada pilihan gandanya jawabannya adalah yang c sampai jumpa pada saat berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Jikatidak ditemukan matriks B, maka A dikatakan matriks tunggal (singular). Jika matriks B dan C adalah invers dari A maka B = C. Matriks A = dapat di- invers apabila ad - bc ≠ 0. Dengan Rumus =. Apabila A dan B adalah matriks seordo dan memiliki balikan maka AB dapat di- invers dan (AB) − 1 = B − 1A − 1. Contoh 1:
Ingat bahwa invers dari matriks dapat dicari dengan rumus berikut! Terlebih dahulu, cari adjoin dari matriks . Adjoin dari matriks dapat dicari dengan menukar elemen-elemen pada diagonal utama dan elemen pada diagonal samping dikalikan dengan . Dalam hal ini, adjoin dari matriks adalah . Oleh karena itu, adjoin dari matriks adalah . Selanjutnya, perhatikan perhitungan berikut! Dengan demikian, invers dari matriks adalah . Jadi, jawaban yang tepat adalah B.

Contohsoal determinan matriks. Contoh soal 1. Tentukan determinan dari matriks . Pembahasan / penyelesaian soal. Pada matriks A kita ketahui a = 3, b = 4, c = 5 dan d = 6. Jadi determinan A = det (A) = a.d - b.c = 3 . 6 - 4 .5 = 18 - 20 = -2. Contoh soal 2.

Kelas 11 SMAMatriksInvers Matriks ordo 2x2Invers Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0322Invers matriks A = [1 2 3 4] adalah A^-1= ....0245Diketahui matriks A=7 2 3 1 dan B=1 -2 -3 7. Tunjukka...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videoHalo cover jika kita melihat soal seperti ini di Sidik ada matriks A B C D invers dari matriks a b c d = 1 per X dikurang b * c kalikan dengan d&a bertukar posisi B dan C x min 1 maka di sini invers dari matriks Q ini berarti sama dengan 1 per min 3 kali 5 min 15 min 7 Kali 2 min 14 x min 14 seperti ini kau dikalikan dengan ini berarti 5 min 3 min 2 min 7 7 ya nanti di = 1 per min 15 + 14 min 15 Min 27 min 3 x min 1 tiap elemen nya berarti di sini minimal kalau di sini min 2 y min 7 min min 3 x + 3 ya ini berarti di sini kalau kita lihat ini adalah jawabannya sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
JikaU 1 = x 1 dan U 2 = x 2 dengan x 2 > x 1, dimana x 1 dan x 2 adalah akar-akar dari persamaan kuadrat x 2 - 12x + 35 = 0, maka determinan matriks A sama dengan . A. -8 D. -2
Kelas 11 SMAMatriksInvers Matriks Ordo 2x2Invers Matriks Ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0242Jika matriks A = 3 -1 11 -4, invers matriks A adalah A^...0151Invers matriks A=-6 -5 -4 3 adalah A^-1= ...0551Diketahui matriks-matriks A= 3 5 -1 -2 dan B=-...0655Diketahui matriks A=5 -3 -2 1 . Jika A^-1 adala...Teks videoDi sini ada pertanyaan tentang invers matriks untuk 2 * 2 untuk matriks 2. * 2. Misalkan matriks A itu adalah a b c d, maka a inversnya adalah 1 per determinan berarti Serong Kanan diagonal Kanaan batik adiknya kita kalikan dikurangin dengan Serong Kiri Ke Kiri mati beceknya kita kalikan dikalikan dengan Pak join-nya adanya itu adalah diagonal kanannya kita tukarkan posisinyakemudian diagonal kiri kita tetap dikasih minus jadi minus b + c maka invers matriks dari a untuk 3 5 2 4 invers nya adalah 1 per determinannya 3 * 4 berarti 12 dikurangi 2 * 5 10 kali kanan join-nya diagonal kanannya ditukar posisinya 4 sama 3 Diagonal kirinya tetap ditulis dikasih minus. Maka a inversnya adalah seperdua kali 4 Min 5 min 2 3 maka inversnya adalah 2 - 5 per 2 berarti minus 2 setengah-setengah sama min 2 min 1 jika sama setengah 3/2 berarti 1 setengah maka inversnya adalah 2 - 2 setengah minus 1 sama 1 setengah tidak ada 6 pilihan tapi pilihan yang mendekati adalah jadi kita pilih tambahkan minus di 2 setengahnya maka pilih demikian pembahasan kita kali ini sampai jumpa di pertanyaan nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul v9TbSL.
  • 86kbxk9qvm.pages.dev/205
  • 86kbxk9qvm.pages.dev/725
  • 86kbxk9qvm.pages.dev/731
  • 86kbxk9qvm.pages.dev/743
  • 86kbxk9qvm.pages.dev/539
  • 86kbxk9qvm.pages.dev/319
  • 86kbxk9qvm.pages.dev/617
  • 86kbxk9qvm.pages.dev/834
  • 86kbxk9qvm.pages.dev/879
  • 86kbxk9qvm.pages.dev/843
  • 86kbxk9qvm.pages.dev/71
  • 86kbxk9qvm.pages.dev/271
  • 86kbxk9qvm.pages.dev/598
  • 86kbxk9qvm.pages.dev/536
  • 86kbxk9qvm.pages.dev/168
  • invers matriks a 2 1 4 3 adalah